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Forward problem Inverse problem
* Well-posed * lll-posed _

o solution exists o not meeting well- Fake L;'

o solution is unique posedness requirement - samples -

o stable w.r.t. perturbation O Ssparse observations _
e Causal * Non-causal :
* Local * Global

How to tackle ill-posedness?

samples * QOptimal experimental design / Active learning

1.Classical (regularization) approach:

Formulate as an optimization problem. Real
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2.Bayesian approach:

Statistical framework to characterize distribution of parameters
given some noisy version of measurement.

Posterior distribution
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Challenge I : Priors m ;ost[m(x)] o £x~ I;rior[m(x)prl (_'Y - f(.X'))]
* Finding a quantitative description of informative and feasible Px 1 Px ( )
priors. = - y [m X)p (? — f(X))]
* Typical priors f x"'PaCclata "
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* However, what if the prior knowledge may be something like... — ; ;,Ost [m(g (Z))] n, =0 n, =1
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Challenge Il : Sampling
* Typical physics-driven inverse problem contain large no. of Experimenta| Results
parameters (104-107).

* MCMC approximation of posterior requires many samples from * Image denoising:
posterior, where each sample involves the solution of PDE.

* An efficient sampler is difficult to design for high-dimensional
parameter space.

Pyt = p, (3 - F(9(2)) p.(2)

 Variance driven adaptive sampling
ny, =20 n, =1 ny =2 Ny
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Central Idea
* Use deep generative model (GAN)s as priors in Bayesian inference
by learning the parameter distribution directly from data.
* Demonstrate GANs as a tool to reduce the dimensionality of
parameter space for efficient posterior sampling.
e Use the quantified uncertainty information for optimal design of
experiments leading to efficient parameter inference.

Generative Adversarial Networks
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 |nitial condition inversion

GAN, the two-player min-max game 3 _ - A XY
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